skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yuan, Jianping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the localization and host galaxy of FRB 20190208A, a repeating source of fast radio bursts (FRBs) discovered using CHIME/FRB. As part of the Pinpointing REpeating ChIme Sources with EVN dishes repeater localization program on the European VLBI Network (EVN), we monitored FRB 20190208A for 65.6 hr at ∼1.4 GHz and detected a single burst, which led to its very long baseline interferometry localization with 260 mas uncertainty (2σ). Follow-up optical observations with the MMT Observatory (i≳ 25.7 mag (AB)) found no visible host at the FRB position. Subsequent deeper observations with the Gran Telescopio Canarias, however, revealed an extremely faint galaxy (r= 27.32 ± 0.16 mag), very likely (99.95%) associated with FRB 20190208A. Given the dispersion measure of the FRB (∼580 pc cm−3), even the most conservative redshift estimate ( z max 0.83 ) implies that this is the lowest-luminosity FRB host to date (≲108L), even less luminous than the dwarf host of FRB 20121102A. We investigate how localization precision and the depth of optical imaging affect host association and discuss the implications of such a low-luminosity dwarf galaxy. Unlike the other repeaters with low-luminosity hosts, FRB 20190208A has a modest Faraday rotation measure of a few tens of rad m−2, and EVN plus Very Large Array observations reveal no associated compact persistent radio source. We also monitored FRB 20190208A for 40.4 hr over 2 yr as part of the Extragalactic Coherent Light from Astrophysical Transients repeating FRB monitoring campaign on the Nançay Radio Telescope and detected one burst. Our results demonstrate that, in some cases, the robust association of an FRB with a host galaxy will require both high localization precision and deep optical follow-up. 
    more » « less
    Free, publicly-accessible full text available November 29, 2025
  2. Abstract High-sensitivity interstellar scintillation and polarization observations of PSR B0656+14 made at three epochs over a year using the Five-hundred-meter Aperture Spherical radio Telescope (FAST) show that the scattering is dominated by two different compact regions. We identify the one nearer to the pulsar with the shell of the Monogem Ring, thereby confirming the association. The other is probably associated with the Local Bubble. We find that the observed position angles of the pulsar spin axis and the spatial velocity are significantly different, with a separation of 19.°3 ± 0.°8, inconsistent with a previously published near-perfect alignment of 1° ± 2°. The two independent scattering regions are clearly defined in the secondary spectra, which show two strong forward parabolic arcs. The arc curvatures imply that the scattering screens corresponding to the outer and inner arcs are located approximately 28 pc from PSR B0656+14 and 185 pc from the Earth, respectively. Comparison of the observed Doppler profiles with electromagnetic simulations shows that both scattering regions are mildly anisotropic. For the outer arc, we estimate the anisotropy A R to be approximately 1.3, with the scattering irregularities aligned parallel to the pulsar velocity. For the outer arc, we compare the observed delay profiles with delay profiles computed from a theoretical strong-scattering model. Our results suggest that the spatial spectrum of the scattering irregularities in the Monogem Ring is flatter than Kolmogorov, but further observations are required to confirm this. 
    more » « less
  3. The East Asian VLBI Network (EAVN) is an international VLBI facility in East Asia and is operated under mutual collaboration between East Asian countries, as well as part of Southeast Asian and European countries. EAVN currently consists of 16 radio telescopes and three correlators located in China, Japan, and Korea, and is operated mainly at three frequency bands, 6.7, 22, and 43 GHz with the longest baseline length of 5078 km, resulting in the highest angular resolution of 0.28 milliarcseconds at 43 GHz. One of distinct capabilities of EAVN is multi-frequency simultaneous data reception at nine telescopes, which enable us to employ the frequency phase transfer technique to obtain better sensitivity at higher observing frequencies. EAVN started its open-use program in the second half of 2018, providing a total observing time of more than 1100 h in a year. EAVN fills geographical gap in global VLBI array, resulting in enabling us to conduct contiguous high-resolution VLBI observations. EAVN has produced various scientific accomplishments especially in observations toward active galactic nuclei, evolved stars, and star-forming regions. These activities motivate us to initiate launch of the ’Global VLBI Alliance’ to provide an opportunity of VLBI observation with the longest baselines on the earth. 
    more » « less